Effective theories across the frontiers

Richard Hill

Theory panel, 2 August 2013

	theory is not programmable. Progress often comes from exploiting connections between fields/frontiers/disciplines subtext: intensity frontier theory for its own sake, but also influences broader theory
•	theorists must demand error bars from experimenters, who in turn must demand improvements from theory
•	nucleon physics is not nuclear physics (not that there's anything wrong with that)
•	experimental data drives theory. Demand for precision and quantitative predictions leads to new theoretical developments that underpin next generation experiments.

what's at stake:

- \bullet ~7 σ shift in Rydberg + discarding of decades of scattering and spectroscopic data ?
- large radiative corrections to leading proton structure ?
- experimental error ?
- something "new"?

e.g.: atoms

what's at stake:

- \bullet ~7 σ shift in Rydberg + discarding of decades of scattering and spectroscopic data ?
- large radiative corrections to leading proton structure ?
- experimental error ?
- something "new"?

heavy particle effective theory (NRQED of composite particles)

Lorentz invariance in heavy particle effective theories:

[Heinonen, Solon, RJH, 1208.0601]

- chiral lagrangian = nonlinear realization of chiral symmetries
- HPEFT = nonlinear (induced) representation of Lorentz symmetry (noncommutative manifold)
- contradicts ~20 year old ansatz of reparameterization invariance, underlying HQET, etc.

would not have asked these questions if not driven by data

many consequences and applications:

- feedback into atomic physics (model independent analysis of rad.corr. to nuclear structure, cf. Friar 1979)

 [Lee, Paz, Solon, R]H, 1212.4508]
- nucleon properties, e.g. polarizabilities from lattice QCD, $\alpha_{\text{static, lattice}} \neq \alpha_{\text{scattering, PDG}}$
- BSM particles, e.g. heavy WIMPs

what's at stake:

- \bullet ~7 σ shift in Rydberg + discarding of decades of scattering and spectroscopic data ?
- large radiative corrections to leading proton structure ?
- experimental error ?
- something "new"?

heavy particle effective theory (NRQED of composite particles)

Lorentz invariance in heavy particle effective theories:

[Heinonen, Solon, RJH, 1208.0601]

- chiral lagrangian = nonlinear realization of chiral symmetries
- HPEFT = nonlinear (induced) representation of Lorentz symmetry (noncommutative manifold)
- contradicts ~20 year old ansatz of reparameterization invariance, underlying HQET, etc.

would not have asked these questions if not driven by data

many consequences and applications:

• feedback into atomic physics (model independent analysis of rad.corr. to nuclear structure, cf. Friar 1979)

[Lee, Paz, Solon, RJH, 1212.4508]

- nucleon properties, e.g. polarizabilities from lattice QCD, $\alpha_{\text{static, lattice}} \neq \alpha_{\text{scattering, PDG}}$
- BSM particles, e.g. heavy WIMPs

heavy WIMP effective theory

- WIMPs plausibly heavy compared to m_W, m_Z (maybe not extremely small, cf. m_h/m_t)
- analog of heavy-quark spin-flavor symmetry:
- BSM particles, e.g. heavy WIMPs

(self-conjugate, spin-independent case)

$$\mathcal{L}_{\chi,SM} = \chi^* \chi \left\{ \sum_{q} c_{1q}^{(0)} O_{1q}^{(0)} + c_{1q}^{(2)} v_{\mu} v_{\nu} O_{1q}^{(2)\mu\nu} + c_2^{(0)} O_2^{(0)} + c_2^{(2)} v_{\mu} v_{\nu} O_2^{(2)\mu\nu} + \dots \right\}$$

$$O_{1q}^{(0)} = m_q \bar{q} q \,,$$

$$O_{1q}^{(2)\mu\nu} = \bar{q} \left(\gamma^{\{\mu} i D^{\nu\}} - \frac{1}{d} g^{\mu\nu} i D \right) q, \qquad O_{2}^{(2)\mu\nu} = -G^{A\mu\lambda} G^{A\nu}_{\quad \lambda} + \frac{1}{d} g^{\mu\nu} (G^{A}_{\alpha\beta})^{2}.$$

$$O_2^{(0)} = (G_{\mu\nu}^A)^2$$

$$O_2^{(2)\mu\nu} = -G^{A\mu\lambda}G^{A\nu}_{\ \ \, \lambda} + \frac{1}{d}g^{\mu\nu}(G^A_{\alpha\beta})^2 \, .$$

→ complete results for the leading weak-scale matching coefficients

$$c_i(m_W, M) \neq c_i^{(0)} + c_i^{(1)} \frac{m_W}{M} + \dots$$

hadronic uncertainties matter

subleading perturbative QCD matters

[Solon, RJH 1111.0016]

mixing with massive states treated similarly

- hydrogen spectroscopy

- heavy meson transitions

- DM interactions

 $E_n(H) = -\frac{1}{2}m_e\alpha^2 + \dots$

 $F^{B\to D}(v'=v)=1+\dots$

 $\sigma(\chi N \to \chi N) = ?$

→ absolute predictions, with error bars

Exciting, challenging time for dark matter searches:

knowledge of SM parameters and hadronic matrix elements

⇒ absolute predictions for scattering cross sections of WIMP dark matter

heavy meson processes

lattice QCD

SCET, HQET, NRQCD

[Minerva, 1305.2243]

10⁻¹ Q_{QE} (GeV²) solutions

problems

 $\vec{F}_{_{+}}$

• theorists must demand error bars from experimenters, who in turn must demand improved theory

neutrino-nucleus cross sections notoriously difficult. E.g., MiniBooNE excess: deviation from MC in never-measured single-photon production, or new physics?

What is the uncertainty? Is 15% reasonable? Recall ~40% uncertainty on basic CCQE

Event generators:

- typically RFG model at nuclear level (now receiving some attention)
- antiquated nucleon-level assumptions

[Smith and Moniz 1972] [Llewellyn Smith 1972]

Essential for next generation experiments to do better with both nucleon-level inputs and nuclear modeling

- nucleon, nuclear and hadronic physics, including radiative corrections, essential to "Intensity frontier" experiments
 - neutrinos, g-2, edm, mu-e, proton decay, n-nbar oscillation, ...
 - should be the domain of HEP to study the entire problem. Can't outsource.
- experimental data drives theory. Demand for precision and quantitative predictions leads to new theoretical developments that motivate and underpin new experiments.